Altered muscle metaboreflex control of coronary blood flow and ventricular function in heart failure.
نویسندگان
چکیده
We investigated the effect of muscle metaboreflex activation on left circumflex coronary blood flow (CBF), coronary vascular conductance (CVC), and regional left ventricular performance in conscious, chronically instrumented dogs during treadmill exercise before and after the induction of heart failure (HF). In control experiments, muscle metaboreflex activation during mild exercise elicited significant reflex increases in mean arterial pressure, heart rate, and cardiac output. CBF increased significantly, whereas no significant change in CVC occurred. There was no significant change in the minimal rate of myocardial shortening (-dl/dt(min)) with muscle metaboreflex activation during mild exercise (15.5 +/- 1.3 to 16.8 +/- 2.4 mm/s, P > 0.05); however, the maximal rate of myocardial relaxation (+dl/dt(max)) increased (from 26.3 +/- 4.0 to 33.7 +/- 5.7 mm/s, P < 0.05). Similar hemodynamic responses were observed with metaboreflex activation during moderate exercise, except there were significant changes in both -dl/dt(min) and dl/dt(max). In contrast, during mild exercise with metaboreflex activation during HF, no significant increase in cardiac output occurred, despite a significant increase in heart rate, inasmuch as a significant decrease in stroke volume occurred as well. The increases in mean arterial pressure and CBF were attenuated, and a significant reduction in CVC was observed (0.74 +/- 0.14 vs. 0.62 +/- 0.12 ml x min(-1) x mmHg(-1); P < 0.05). Similar results were observed during moderate exercise in HF. Muscle metaboreflex activation did not elicit significant changes in either -dl/dt(min) or +dl/dt(max) during mild exercise in HF. We conclude that during HF the elevated muscle metaboreflex-induced increases in sympathetic tone to the heart functionally vasoconstrict the coronary vasculature, which may limit increases in myocardial performance.
منابع مشابه
Impaired muscle metaboreflex-induced increases in ventricular function in heart failure.
We investigated to what extent heart failure alters the ability of the muscle metaboreflex to improve ventricular function. Dogs were chronically instrumented to monitor mean arterial pressure (MAP), cardiac output (CO), heart rate (HR), stroke volume (SV), and central venous pressure (CVP) at rest and during mild treadmill exercise (3.2 km/h) before and during reductions in hindlimb blood flow...
متن کاملMuscle metaboreflex-induced coronary vasoconstriction functionally limits increases in ventricular contractility.
Muscle metaboreflex activation during dynamic exercise induces a substantial increase in cardiac work and oxygen demand via a significant increase in heart rate, ventricular contractility, and afterload. This increase in cardiac work should cause coronary metabolic vasodilation. However, little if any coronary vasodilation is observed due to concomitant sympathetically induced coronary vasocons...
متن کاملExaggerated coronary vasoconstriction limits muscle metaboreflex-induced increases in ventricular performance in hypertension.
Increases in myocardial oxygen consumption during exercise mainly occur via increases in coronary blood flow (CBF) as cardiac oxygen extraction is high even at rest. However, sympathetic coronary constrictor tone can limit increases in CBF. Increased sympathetic nerve activity (SNA) during exercise likely occurs via the action of and interaction among activation of skeletal muscle afferents, ce...
متن کاملModulation of cardiac output alters the mechanisms of the muscle metaboreflex pressor response.
Muscle metaboreflex activation during submaximal dynamic exercise in normal subjects elicits a pressor response primarily due to increased cardiac output (CO). However, when the ability to increase CO is limited, such as in heart failure or during maximal exercise, the muscle metaboreflex-induced increases in arterial pressure occur via peripheral vasoconstriction. How the mechanisms of this pr...
متن کاملCardiovascular responses to exercise and muscle metaboreflex activation during the recovery from pacing-induced heart failure.
Rapid recovery of resting hemodynamics from tachycardia- or arrhythmia-induced heart failure (HF) has been demonstrated in both humans and animals. However, little is known about cardiovascular responses to exercise in animals or about reflex control of the cardiovascular system during exercise while recovering from HF. Inasmuch as the reduced cardiac output (CO) during exercise in HF has been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 288 3 شماره
صفحات -
تاریخ انتشار 2005